Re: [Agda] ... n ∸ m > 0
Andrés Sicard-Ramírez
asr at eafit.edu.co
Mon Jan 12 19:52:59 CET 2015
On 12 January 2015 at 13:28, Sergei Meshveliani <mechvel at botik.ru> wrote:
> Having the goal of m < n → n ∸ m > 0 (for ℕ),
>
> and using Standard library 0.9, I program
>
> lemma : ∀ n → (suc n) ∸ n ≡ 1
> lemma 0 = PE.refl
> lemma (suc n) = lemma n
>
> m<n→n∸m>0 : ∀ {m n} → m < n → n ∸ m > 0
> m<n→n∸m>0 {m} {n} m<n =
> ≤begin
> suc 0 ≡≤[ PE.sym $ lemma m ]
> suc m ∸ m ≤[ ∸-mono m<n (≤refl {m} PE.refl) ]
> n ∸ m
> ≤end
>
> Here lemma looks like a complication that needs to be avoided.
> Is there possible a shorter implementation for the goal?
>
Yes. You can pattern-match on m<n.
--
Andrés
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://lists.chalmers.se/pipermail/agda/attachments/20150112/dbd3ed5a/attachment.html
More information about the Agda
mailing list