[Agda] ... n ∸ m > 0
Sergei Meshveliani
mechvel at botik.ru
Mon Jan 12 19:28:39 CET 2015
People,
Having the goal of m < n → n ∸ m > 0 (for ℕ),
and using Standard library 0.9, I program
lemma : ∀ n → (suc n) ∸ n ≡ 1
lemma 0 = PE.refl
lemma (suc n) = lemma n
m<n→n∸m>0 : ∀ {m n} → m < n → n ∸ m > 0
m<n→n∸m>0 {m} {n} m<n =
≤begin
suc 0 ≡≤[ PE.sym $ lemma m ]
suc m ∸ m ≤[ ∸-mono m<n (≤refl {m} PE.refl) ]
n ∸ m
≤end
Here lemma looks like a complication that needs to be avoided.
Is there possible a shorter implementation for the goal?
Thanks,
------
Sergei
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://lists.chalmers.se/pipermail/agda/attachments/20150112/8425129e/attachment.html
More information about the Agda
mailing list