<div dir="ltr"><div class="gmail_extra"><br><div class="gmail_quote">On 12 January 2015 at 13:28, Sergei Meshveliani <span dir="ltr"><<a href="mailto:mechvel@botik.ru" target="_blank">mechvel@botik.ru</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div>Having the goal of m < n → n ∸ m > 0 (for ℕ), <br>
<br>
and using Standard library 0.9, I program<br>
<br>
lemma : ∀ n → (suc n) ∸ n ≡ 1<br>
lemma 0 = PE.refl <br>
lemma (suc n) = lemma n<br>
<br>
m<n→n∸m>0 : ∀ {m n} → m < n → n ∸ m > 0<br>
m<n→n∸m>0 {m} {n} m<n = <br>
≤begin <br>
suc 0 ≡≤[ PE.sym $ lemma m ]<br>
suc m ∸ m ≤[ ∸-mono m<n (≤refl {m} PE.refl) ] <br>
n ∸ m<br>
≤end<br>
<br>
Here lemma looks like a complication that needs to be avoided.<br>
Is there possible a shorter implementation for the goal?</div></blockquote></div><br><div class="gmail_default" style="font-size:small">Yes. You can pattern-match on m<n.</div><br><br clear="all"><br>-- <br><div class="gmail_signature"><div dir="ltr">Andrés<br></div></div>
</div></div>