[Agda] Termination checking
Andreas Abel
abela at chalmers.se
Sat Nov 8 14:57:37 CET 2014
The subterm checker of the termination checker is probably not working.
It works if you use an explicit equality constraint in constructor ⟦_⟫_⟧.
⟦_⟫_⟧ : ∀ {d d₁ d₂ ol l nl} {eq : d ≡ d₁ + d₂} → Subst d₁ ol l ->
Subst d₂ l nl -> Subst (suc d) ol nl
lookup .(suc d) v (⟦_⟫_⟧ {d} {eq = eq} ρ σ) = lookup d v (_⟫_ {eq
= eq} ρ σ)
Full code attached.
On 08.11.2014 14:10, Francesco Mazzoli wrote:
> mutual
> data Tm (l : ℕ) : Set where
> var : Fin l -> Tm l
> _·_ : Tm l -> Tm l -> Tm l
> lam : Tm (suc l) -> Tm l
> ⟦_,_⟧ : ∀ {d ol} -> Tm ol -> Subst d ol l -> Tm l
>
> data Subst : (d : ℕ)(ol : ℕ)(nl : ℕ) -> Set where
> id : ∀ {ol} -> Subst 0 ol ol
> _∷_ : ∀ {d ol nl} -> Tm nl -> Subst d ol nl -> Subst d (suc ol) nl
> ⟦_⟫_⟧ : ∀ {d₁ d₂ ol l nl} -> Subst d₁ ol l -> Subst d₂ l nl ->
> Subst (suc (d₁ + d₂)) ol nl
>
> _⟫_ : ∀ {d₁ d₂ ol l nl} -> Subst d₁ ol l -> Subst d₂ l nl -> Subst (d₁
> + d₂) ol nl
> id ⟫ σ = σ
> (t ∷ ρ) ⟫ σ = ⟦ t , σ ⟧ ∷ (ρ ⟫ σ)
> _⟫_ .{suc (d₁ + d₂)} {d₃} {ol} {_} {nl} (⟦_⟫_⟧ {d₁} {d₂} ρ σ) γ =
> subst (λ d → Subst d ol nl) (lm d₁ d₂ d₃) (ρ ⟫ ⟦ σ ⟫ γ ⟧)
> where
> lm : ∀ n m k -> n + suc (m + k) ≡ suc (n + m + k)
> lm zero m k = refl
> lm (suc n) m k = cong suc (lm n m k)
>
> lookup : ∀ {ol nl} d -> Fin ol -> Subst d ol nl -> Tm nl
> lookup .0 v id = var v
> lookup d zero (t ∷ ρ) = t
> lookup d (suc v) (t ∷ ρ) = lookup d v ρ
> lookup .(suc (d₁ + d₂)) v (⟦_⟫_⟧ {d₁} {d₂} ρ σ) = lookup (d₁ +
> d₂) v (ρ ⟫ σ)
--
Andreas Abel <>< Du bist der geliebte Mensch.
Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden
andreas.abel at gu.se
http://www2.tcs.ifi.lmu.de/~abel/
-------------- next part --------------
open import Data.Nat
open import Data.Nat.Properties.Simple using (+-suc)
open import Data.Fin using (Fin; zero; suc)
open import Relation.Binary.PropositionalEquality
mutual
data Tm (l : ℕ) : Set where
var : Fin l -> Tm l
_·_ : Tm l -> Tm l -> Tm l
lam : Tm (suc l) -> Tm l
_⟦_⟧ : ∀ {d ol} -> Tm ol -> Subst d ol l -> Tm l
data Subst : (d : ℕ)(ol : ℕ)(nl : ℕ) -> Set where
id : ∀ {ol} -> Subst 0 ol ol
_∷_ : ∀ {d ol nl} -> Tm nl -> Subst d ol nl -> Subst d (suc ol) nl
⟦_⟫_⟧ : ∀ {d d₁ d₂ ol l nl} {eq : d ≡ d₁ + d₂} → Subst d₁ ol l -> Subst d₂ l nl -> Subst (suc d) ol nl
_⟫_ : ∀ {d d₁ d₂ ol l nl}{eq : d ≡ d₁ + d₂} -> Subst d₁ ol l -> Subst d₂ l nl -> Subst d ol nl
_⟫_ {eq = refl} id σ = σ
_⟫_ {eq = eq } (t ∷ ρ) σ = (t ⟦ σ ⟧) ∷ (_⟫_ {eq = eq} ρ σ)
_⟫_ {eq = refl} (⟦_⟫_⟧ {d₁ = d₁} {eq = refl} γ ρ) σ = _⟫_ {eq = lm d₁} γ (⟦_⟫_⟧ {eq = refl} ρ σ)
where
lm : ∀ n {m k} -> suc (n + m + k) ≡ n + suc (m + k)
lm zero = refl
lm (suc n) = cong suc (lm n)
lookup : ∀ {ol nl} d -> Fin ol -> Subst d ol nl -> Tm nl
lookup .0 v id = var v
lookup d zero (t ∷ ρ) = t
lookup d (suc v) (t ∷ ρ) = lookup d v ρ
lookup .(suc d) v (⟦_⟫_⟧ {d} {eq = eq} ρ σ) = lookup d v (_⟫_ {eq = eq} ρ σ)
More information about the Agda
mailing list