[Agda] Termination checking
Francesco Mazzoli
f at mazzo.li
Sat Nov 8 14:10:34 CET 2014
Why doesn't the following definition pass the termination checker?
````
lookup : ∀ {ol nl} d -> Fin ol -> Subst d ol nl -> Tm nl
lookup .0 v id = var v
lookup d zero (t ∷ ρ) = t
lookup d (suc v) (t ∷ ρ) = lookup d v ρ
lookup .(suc (d₁ + d₂)) v (⟦_⟫_⟧ {d₁} {d₂} ρ σ) = lookup (d₁ +
d₂) v (ρ ⟫ σ)
````
The problemating call is the last one, but it should be fairly clear
that `lookup` is structural on d.
The full listing:
````
mutual
data Tm (l : ℕ) : Set where
var : Fin l -> Tm l
_·_ : Tm l -> Tm l -> Tm l
lam : Tm (suc l) -> Tm l
⟦_,_⟧ : ∀ {d ol} -> Tm ol -> Subst d ol l -> Tm l
data Subst : (d : ℕ)(ol : ℕ)(nl : ℕ) -> Set where
id : ∀ {ol} -> Subst 0 ol ol
_∷_ : ∀ {d ol nl} -> Tm nl -> Subst d ol nl -> Subst d (suc ol) nl
⟦_⟫_⟧ : ∀ {d₁ d₂ ol l nl} -> Subst d₁ ol l -> Subst d₂ l nl ->
Subst (suc (d₁ + d₂)) ol nl
_⟫_ : ∀ {d₁ d₂ ol l nl} -> Subst d₁ ol l -> Subst d₂ l nl -> Subst (d₁
+ d₂) ol nl
id ⟫ σ = σ
(t ∷ ρ) ⟫ σ = ⟦ t , σ ⟧ ∷ (ρ ⟫ σ)
_⟫_ .{suc (d₁ + d₂)} {d₃} {ol} {_} {nl} (⟦_⟫_⟧ {d₁} {d₂} ρ σ) γ =
subst (λ d → Subst d ol nl) (lm d₁ d₂ d₃) (ρ ⟫ ⟦ σ ⟫ γ ⟧)
where
lm : ∀ n m k -> n + suc (m + k) ≡ suc (n + m + k)
lm zero m k = refl
lm (suc n) m k = cong suc (lm n m k)
lookup : ∀ {ol nl} d -> Fin ol -> Subst d ol nl -> Tm nl
lookup .0 v id = var v
lookup d zero (t ∷ ρ) = t
lookup d (suc v) (t ∷ ρ) = lookup d v ρ
lookup .(suc (d₁ + d₂)) v (⟦_⟫_⟧ {d₁} {d₂} ρ σ) = lookup (d₁ +
d₂) v (ρ ⟫ σ)
````
Francesco
More information about the Agda
mailing list