[Agda] binder for existential quantifier
Jean-Philippe Bernardy
bernardy at chalmers.se
Fri Apr 8 13:02:55 CEST 2011
See
syntax Σ A (λ x → B) = Σ[ x ∶ A ] B
in
http://www.cse.chalmers.se/~nad/listings/lib-0.5/Data.Product.html
Cheers,
-- JP
On Fri, Apr 8, 2011 at 11:08 AM, Martin Escardo <m.escardo at cs.bham.ac.uk> wrote:
> Dear Agda list members,
>
> If I define the existential quantifier as follows:
>
> Ω = Set -- type of propositions
>
> data ∃ {X : Set} (A : X → Ω) : Ω where
> ∃-intro : (x₀ : X) → A x₀ → ∃(\(x : X) → A x)
>
> then I have to write
>
> ∃(\(x : X) → A x) (*)
>
> rather than
>
> ∃ (x : X) → A x (**)
>
> as one can do with the universal quantifier.
>
> This is tolerable, but I would prefer to be able to write (**).
>
> Can this be done with a "syntax" declaration?
>
> Thanks,
> Martin
> _______________________________________________
> Agda mailing list
> Agda at lists.chalmers.se
> https://lists.chalmers.se/mailman/listinfo/agda
>
More information about the Agda
mailing list