[Agda] Recursion on transfinite numbers.
Naïm Favier
naimf at chalmers.se
Wed Feb 19 15:08:27 CET 2025
Hi,
ind A a₀ _⋆_ ⋆swap sv (trunc a b p q i j) = isSet→SquareP
{A = λ i j → A (trunc a b p q i j)}
(λ _ _ → sv)
(λ j → ind A a₀ _⋆_ ⋆swap sv (p j))
(λ j → ind A a₀ _⋆_ ⋆swap sv (q j))
refl refl i j
On 19/02/2025 12:46, Serge Leblanc wrote:
>
> Some people who received this message don't often get email from 33dbqnxpy7if at gmail.com. Learn why this is important <https://aka.ms/LearnAboutSenderIdentification>
>
>
> Dear All,
>
> Can someone help me to realize the principle of recursion on transfinite numbers ?
> I based it on the work of Fredrik Nordvall Forsberg but he uses an old version of the Cubical libraries.
>
> Cordialement,
>
> --
> Serge Leblanc
> ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
> gpg --search-keys 0xD2B8A2825F8DABB7
> GnuPG Fingerprint = 123E 9312 453A 8F8E 7FDB ABD7 D2B8 A282 5F8D ABB7
>
> _______________________________________________
> Agda mailing list
> Agda at lists.chalmers.se
> https://lists.chalmers.se/mailman/listinfo/agda
More information about the Agda
mailing list