[Agda] overloading operations

Guillermo Calderon calderon at fing.edu.uy
Wed Nov 14 16:10:03 CET 2018


Hi,

This works:

```
   ...

   open Setoid   {{...}}

   instance
     A' : Setoid α α=
     A' = A

     B' : Setoid β β=
     B' = B

   C  = Setoid.Carrier A
   C' = Setoid.Carrier B

   IsCongruent :  (C → C') → Set _
   IsCongruent f = {x y : C} → x ≈ y → (f x) ≈ (f y)            -- (II)

```

Unfortunately, I have to introduce dummy identifiers A' and B' in order 
to declare the instances. Perhaps, there exists a way to avoid it.

Regards,

Guillermo



El 8/11/18 a las 15:16, Sergei Meshveliani escribió:
> Can anybody, please, explain how to arrange operation overloading
> (something like classes) ?
> 
> The first example is
> 
> ----------------------------------------------------------------
> open import Level           using (_⊔_)
> open import Relation.Binary using (Setoid)
> 
> module _ {α α= β β=} (A : Setoid α α=) (B : Setoid β β=)
>    where
>    open Setoid   -- {{...}}
> 
>    C  = Setoid.Carrier A
>    C' = Setoid.Carrier B
> 
>    IsCongruent :  (C → C') → Set _
>    IsCongruent f =
>                  {x y : C} → _≈_ A x y → _≈_ B (f x) (f y)    -- (I)
> 
>               -- {x y : C} → x ≈ y → (f x) ≈ (f y)            -- (II)
> 
> ----------------------------------------------------------------
> 
> 
> The line (I) does work.
> Then I try the line (II), with un-commenting {{...}}.
> And it is not type-checked.
> I hoped for that it would find that the first ≈ is on C, while the
> second ≈ is on C'. But it does not.
> 
> And real examples are like this:
> 
> -----------------------------------------------------------------------
> module _ {α α= β β=} (G : Group α α=) (G' : Group β β=)
>   where
>   ...
>   homomorphismPreservesInversion :
>     (mHomo : MonoidHomomorphism)
>     (let f = MonoidHomomorphism.carryMap mHomo) (x : C) →
>                                                 f (x ⁻¹) ≈' (f x) ⁻¹'
>   homomorphismPreservesInversion
>                  (monoidHomo ((f , f-cong) , f∙homo) f-preserves-ε) x =
>     begin≈'
>       f x'                     ≈'[ ≈'sym (∙ε' fx') ]
>       fx' ∙' ε'                ≈'[ ∙'cong2 (≈'sym (x∙'x⁻¹ fx)) ]
>       fx' ∙' (fx ∙' fx ⁻¹')    ≈'[ ≈'sym (≈'assoc fx' fx (fx ⁻¹')) ]
>       (fx' ∙' fx) ∙' fx ⁻¹'    ≈'[ ∙'cong1 (≈'sym (f∙homo x' x)) ]
>       f (x' ∙ x) ∙' fx ⁻¹'     ≈'[ ∙'cong1 (f-cong (x⁻¹∙x x)) ]
>       f ε ∙' fx ⁻¹'            ≈'[ ∙'cong1 f-preserves-ε ]
>       ε' ∙' fx ⁻¹'             ≈'[ ε'∙ (fx ⁻¹') ]
>       (f x) ⁻¹'
>     end≈'
>     where
>     x' = x ⁻¹;   fx = f x;   fx' = f x'
> ----------------------------------------------------------------------
> 
> Here the carriers of G and G' are C and C',
> ≈ is on C,  ≈' is on C' (by renaming),
> _∙_ on C, _∙'_ on C',
> ε is of G, ε' of G',
> _⁻¹ is of G,  _⁻¹' of G',
> and so on.
> 
> It is desirable to make the code more readable by canceling some of the
> above renaming. For example, to replace ε' with ε and _∙'_ with _∙_.
> Is it possible to do this by using something like
> open Group {{...}}
> ?
> 
> Thanks,
> 
> ------
> Sergei
> 
> 
> 
> 
> _______________________________________________
> Agda mailing list
> Agda at lists.chalmers.se
> https://lists.chalmers.se/mailman/listinfo/agda
> 




More information about the Agda mailing list