[Agda] `Pointwise' over Setoid
Matthew Daggitt
matthewdaggitt at gmail.com
Sat Mar 24 14:02:40 CET 2018
Hi Sergei,
Can you open standard library suggestions like this on the stdlib git
repository? Probably a better place to discuss them.
Thanks,
Matthew
On Sat, Mar 24, 2018 at 10:33 AM, Sergei Meshveliani <mechvel at botik.ru>
wrote:
> Dear Standard library developers,
>
> (I am sorry, if this was discussed earlier)
>
> Standard library provides map-cong, map-id, map-compose
> as related to the propositional equality _≡_.
> But the case of List over Setoid is highly usable.
>
> And I suggest this:
>
> -----------------------------------------------------------------------
> module OfMapsToSetoid {α β β=} (A : Set α) (S : Setoid β β=)
> where
> open Setoid S using (_≈_)
> renaming (Carrier to B; reflexive to ≈reflexive;
> refl to ≈refl; sym to ≈sym; trans to ≈trans)
> infixl 2 _≈∘_
>
> _≈∘_ : Rel (A → B) _
> f ≈∘ g = (x : A) → f x ≈ g x
>
> ≈∘refl : Reflexive _≈∘_
> ≈∘refl _ = ≈refl
>
> ≈∘reflexive : _≡_ ⇒ _≈∘_
> ≈∘reflexive {x} refl = ≈∘refl {x}
>
> ≈∘sym : Symmetric _≈∘_
> ≈∘sym f≈∘g = ≈sym ∘ f≈∘g
>
> ≈∘trans : Transitive _≈∘_
> ≈∘trans f≈∘g g≈∘h x = ≈trans (f≈∘g x) (g≈∘h x)
>
> ≈∘Equiv : IsEquivalence _≈∘_
> ≈∘Equiv = record{ refl = \{x} → ≈∘refl {x}
> ; sym = \{x} {y} → ≈∘sym {x} {y}
> ; trans = \{x} {y} {z} → ≈∘trans {x} {y} {z} }
>
> ≈∘Setoid : Setoid (α ⊔ β) (α ⊔ β=)
> ≈∘Setoid = record{ Carrier = A → B
> ; _≈_ = _≈∘_
> ; isEquivalence = ≈∘Equiv }
>
> lSetoid = ListPoint.setoid S
>
> open Setoid lSetoid using () renaming (_≈_ to _=l_; refl to =l-refl)
>
> gen-map-cong : {f g : A → B} → f ≈∘ g → (xs : List A) →
> map f xs =l map g xs
> gen-map-cong _ [] = =l-refl
> gen-map-cong f≈∘g (x ∷ xs) = (f≈∘g x) ∷p (gen-map-cong f≈∘g xs)
>
> ...
> ----------------------------------------------------------
>
>
> Regards,
>
> ------
> Sergei
>
> _______________________________________________
> Agda mailing list
> Agda at lists.chalmers.se
> https://lists.chalmers.se/mailman/listinfo/agda
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.chalmers.se/pipermail/agda/attachments/20180324/02e5a475/attachment.html>
More information about the Agda
mailing list