[Agda] Typed DeBruijn, typed Phoas, and untyped DeBruijn
Philip Wadler
wadler at inf.ed.ac.uk
Tue Feb 27 14:26:52 CET 2018
The typed DeBruijn representation is well known, as are typed PHOAS
and untyped DeBruijn. It is easy to convert PHOAS to untyped
DeBruijn. Is it known how to convert PHOAS to typed DeBruijn?
Yours, -- P
## Imports
\begin{code}
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_)
\end{code}
## Typed DeBruijn
\begin{code}
infixr 4 _⇒_
data Type : Set where
o : Type
_⇒_ : Type → Type → Type
data Env : Set where
ε : Env
_,_ : Env → Type → Env
data Var : Env → Type → Set where
Z : ∀ {Γ : Env} {A : Type} → Var (Γ , A) A
S : ∀ {Γ : Env} {A B : Type} → Var Γ B → Var (Γ , A) B
data Exp : Env → Type → Set where
var : ∀ {Γ : Env} {A : Type} → Var Γ A → Exp Γ A
abs : ∀ {Γ : Env} {A B : Type} → Exp (Γ , A) B → Exp Γ (A ⇒ B)
app : ∀ {Γ : Env} {A B : Type} → Exp Γ (A ⇒ B) → Exp Γ A → Exp Γ B
\end{code}
## Untyped DeBruijn
\begin{code}
data DB : Set where
var : ℕ → DB
abs : DB → DB
app : DB → DB → DB
\end{code}
# PHOAS
\begin{code}
data PH (X : Type → Set) : Type → Set where
var : ∀ {A : Type} → X A → PH X A
abs : ∀ {A B : Type} → (X A → PH X B) → PH X (A ⇒ B)
app : ∀ {A B : Type} → PH X (A ⇒ B) → PH X A → PH X B
\end{code}
# Convert PHOAS to DB
\begin{code}
PH→DB : ∀ {A} → (∀ {X} → PH X A) → DB
PH→DB M = h M 0
where
K : Type → Set
K A = ℕ
h : ∀ {A} → PH K A → ℕ → DB
h (var k) j = var (j ∸ k)
h (abs N) j = abs (h (N (j + 1)) (j + 1))
h (app L M) j = app (h L j) (h M j)
\end{code}
# Test examples
\begin{code}
Church : Type
Church = (o ⇒ o) ⇒ o ⇒ o
twoExp : Exp ε Church
twoExp = (abs (abs (app (var (S Z)) (app (var (S Z)) (var Z)))))
twoPH : ∀ {X} → PH X Church
twoPH = (abs (λ f → (abs (λ x → (app (var f) (app (var f) (var x)))))))
twoDB : DB
twoDB = (abs (abs (app (var 1) (app (var 1) (var 0)))))
ex : PH→DB twoPH ≡ twoDB
ex = refl
\end{code}
. \ Philip Wadler, Professor of Theoretical Computer Science,
. /\ School of Informatics, University of Edinburgh
. / \ and Senior Research Fellow, IOHK
. http://homepages.inf.ed.ac.uk/wadler/
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.chalmers.se/pipermail/agda/attachments/20180227/98e5ae68/attachment.html>
-------------- next part --------------
An embedded and charset-unspecified text was scrubbed...
Name: not available
URL: <http://lists.chalmers.se/pipermail/agda/attachments/20180227/98e5ae68/attachment.ksh>
More information about the Agda
mailing list