[Agda] ⊓ in Nat
Andreas Abel
abela at chalmers.se
Sat Apr 22 20:35:16 CEST 2017
Dear Sergei,
well, there is
m⊓n≤m : ∀ m n → m ⊓ n ≤ m
m⊓n≤m zero _ = z≤n
m⊓n≤m (suc m) zero = z≤n
m⊓n≤m (suc m) (suc n) = s≤s $ m⊓n≤m m n
and there is commutativity of the minium.
isDistributiveLattice : IsDistributiveLattice _≡_ _⊓_ _⊔_
isDistributiveLattice = record
{ isLattice = record
{ isEquivalence = PropEq.isEquivalence
; ∨-comm = ⊓-comm
; ∨-assoc = ⊓-assoc
; ∨-cong = cong₂ _⊓_
; ∧-comm = ⊔-comm
; ∧-assoc = ⊔-assoc
; ∧-cong = cong₂ _⊔_
; absorptive = absorptive-⊓-⊔
}
; ∨-∧-distribʳ = proj₂ distrib-⊓-⊔
}
Together, you get what you need.
Best,
Andreas
On 22.04.2017 12:49, Sergei Meshveliani wrote:
> Dear list,
>
> This is on Standard library.
>
> Data.Nat defines _⊓_, and Data.Nat.Properties proves certain
> properties of _⊓_.
> And I have an impression that it lacks a lemma
>
> ⊓≤both : ∀ m n → m ⊓ n ≤ m × m ⊓ n ≤ n
>
> Regards,
>
> ------
> Sergei
>
> _______________________________________________
> Agda mailing list
> Agda at lists.chalmers.se
> https://lists.chalmers.se/mailman/listinfo/agda
>
--
Andreas Abel <>< Du bist der geliebte Mensch.
Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden
andreas.abel at gu.se
http://www.cse.chalmers.se/~abela/
More information about the Agda
mailing list