[Agda] help explaining instance resolution
Martin Stone Davis
martin.stone.davis at gmail.com
Sun Apr 2 08:12:07 CEST 2017
{- Can someone explain why test2 succeeds but test1 fails (with unsolved
metas & constraints)? How does the addition of the ⦃ isRelation ⦄
parameter to IsSymmetric2 help? I figure it must somehow have to do with
some metas getting solved, therefore allowing instance search to
succeed, but beyond that I'm quite foggy. -}
{-# OPTIONS --show-implicit #-}
record IsSymmetric1 {A : Set} (F : A → A → A) (Q : A → A → Set) : Set where
field
symmetry1 : ∀ {x y} → Q (F x y) (F y x)
open IsSymmetric1 ⦃ … ⦄
record IsRelation {A : Set} (Q : A → A → Set) : Set where
no-eta-equality
record IsSymmetric2 {A : Set} (F : A → A → A) (Q : A → A → Set) ⦃
isRelation : IsRelation Q ⦄ : Set where
field
symmetry2 : ∀ {x y} → Q (F x y) (F y x)
open IsSymmetric2 ⦃ … ⦄
postulate
B : Set
G : B → B → B
R : B → B → Set
instance I-IsSymmetric1 : IsSymmetric1 {B} G R
instance I-IsRelation : IsRelation R
instance I-IsSymmetric2 : IsSymmetric2 {B} G R
test1 : ∀ {x y} → R (G x y) (G y x)
test1 = symmetry1 -- yellow unless {F = G} or {Q = R} is specified
{-
_A_39 : Set [ at ….agda:29,9-18 ]
_F_40 : _A_39 {.x} {.y} → _A_39 {.x} {.y} → _A_39 {.x} {.y} [ at
….agda:29,9-18 ]
_Q_41 : _A_39 {.x} {.y} → _A_39 {.x} {.y} → Set [ at ….agda:29,9-18 ]
_r_42 : IsSymmetric1 {_A_39 {.x} {.y}} (_F_40 {.x} {.y}) (_Q_41 {.x}
{.y}) [ at ….agda:29,9-18 ]
_x_43 : _A_39 {.x} {.y} [ at ….agda:29,9-18 ]
_y_44 : _A_39 {.x} {.y} [ at ….agda:29,9-18 ]
_45 : R (G .x .y) (G .y .x) [ at ….agda:29,9-18 ]
_46 : R (G .x .y) (G .y .x) [ at ….agda:29,9-18 ]
———— Errors ————————————————————————————————————————————————
Failed to solve the following constraints:
Resolve instance argument
_42 :
{.x .y : B} →
IsSymmetric1 {_A_39 {.x} {.y}} (_F_40 {.x} {.y}) (_Q_41 {.x} {.y})
Candidates I-IsSymmetric1 : IsSymmetric1 {B} G R
[55] _Q_41 {.x} {.y}
(_F_40 {.x} {.y} (_x_43 {.x} {.y}) (_y_44 {.x} {.y}))
(_F_40 {.x} {.y} (_y_44 {.x} {.y}) (_x_43 {.x} {.y}))
=< R (G .x .y) (G .y .x)
: Set
_45 :=
λ {.x} {.y} →
IsSymmetric1.symmetry1 (_r_42 {.x} {.y}) {_x_43 {.x} {.y}}
{_y_44 {.x} {.y}}
[blocked on problem 55]
-}
test2 : ∀ {x y} → R (G x y) (G y x)
test2 = symmetry2
More information about the Agda
mailing list