[Agda] double constructor termination
Andreas Abel
andreas.abel at ifi.lmu.de
Wed May 4 10:01:20 CEST 2016
This works:
{-# OPTIONS --termination-depth=2 #-}
open import Relation.Binary.PropositionalEquality as PE using (_≡_)
open import Data.Nat using (ℕ; suc; _+_; _≤_; pred)
open _≤_
lemma : ∀ n → n ≤ n + 1
lemma 0 = z≤n
lemma 1 = s≤s z≤n
lemma (suc (suc n)) = s≤s n'≤n'+1 where
n'≤n'+1 = lemma (suc n)
On 03.05.2016 18:54, Andreas Abel wrote:
> Let is just a notation for a substitution.
> Where introduces new declarations.
>
> The 'let'-fix is equivalent to
>
> lemma (suc (suc n)) =s≤s (lemma (suc n))
>
> The 'where'-version should be equivalent to
>
> lemma (suc (suc n)) = s≤s (aux n)
>
> aux n = lemma (suc n)
>
> This should work with OPTIONS --termination-depth=2
> (untested).
>
> On 02.05.2016 12:07, Jesper Cockx wrote:
>> One solution is to use 'let' instead of 'where':
>>
>> lemma : ∀ n → n ≤ n + 1
>> lemma 0 = z≤n
>> lemma 1 = s≤s z≤n
>> lemma (suc (suc n)) =
>> let n'≤n'+1 = lemma (suc n)
>> in s≤s n'≤n'+1
>>
>> I'm not sure why Agda accepts the let-version, but not the
>> where-version, though.
>>
>> cheers,
>> Jesper
>>
>>
>> On Mon, May 2, 2016 at 11:47 AM, Sergei Meshveliani <mechvel at botik.ru
>> <mailto:mechvel at botik.ru>> wrote:
>>
>> Hi,
>>
>> Can people advise, please, on the following subject?
>> The below program can be rewritten with removing a double `suc'
>> pattern.
>> But let it be a contrived example:
>>
>> ------------------------------------------------------------------
>> open import Relation.Binary.PropositionalEquality as PE using (_≡_)
>> open import Data.Nat using (ℕ; suc; _+_; _≤_; pred)
>>
>> open _≤_
>>
>> lemma : ∀ n → n ≤ n + 1
>> lemma 0 = z≤n
>> lemma 1 = s≤s z≤n
>> lemma (suc (suc n)) = s≤s n'≤n'+1 where
>> n'≤n'+1 = lemma (suc n)
>> ------------------------------------------------------------------
>>
>> Agda does not see termination here.
>> What is the nicest way to prove termination with preserving this
>> suc-suc
>> pattern?
>> I write it this way:
>>
>> --------------------------------
>> lemma n = aux n (pred n) PE.refl
>> where
>> aux : (n m : ℕ) → m ≡ pred n → n ≤ n + 1
>> aux 0 _ _ = z≤n
>> aux 1 _ _ = s≤s z≤n
>> aux (suc (suc n)) 0 ()
>> aux (suc (suc n)) (suc m) m'≡pred-n'' = s≤s n'≤n'+1
>> where
>> m≡pred-n' = PE.cong pred m'≡pred-n''
>> n'≤n'+1 = aux (suc n) m m≡pred-n'
>> ---------------------------------
>>
>> And it looks awkward.
>>
>> Thanks,
>>
>> ------
>> Sergei
>>
>>
>> _______________________________________________
>> Agda mailing list
>> Agda at lists.chalmers.se <mailto:Agda at lists.chalmers.se>
>> https://lists.chalmers.se/mailman/listinfo/agda
>>
>>
>>
>>
>> _______________________________________________
>> Agda mailing list
>> Agda at lists.chalmers.se
>> https://lists.chalmers.se/mailman/listinfo/agda
>>
>
>
--
Andreas Abel <>< Du bist der geliebte Mensch.
Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden
andreas.abel at gu.se
http://www2.tcs.ifi.lmu.de/~abel/
More information about the Agda
mailing list