No help with homework on this list [Re: [Agda] Agda Questions.]
Andreas Abel
andreas.abel at ifi.lmu.de
Tue Sep 22 14:11:08 CEST 2015
I see this happening on the Coq list, "helpful" experts answering
homework Coq assignments. I think we should abstain from this here.
--Andreas
On 22.09.2015 14:02, Aaron Stump wrote:
> Dear Agda list,
>
> Yes, this is homework for my class, so thanks for your nonresponse.
>
> Aaron
>
> On Tue, Sep 22, 2015 at 6:32 AM, Andreas Abel <andreas.abel at ifi.lmu.de
> <mailto:andreas.abel at ifi.lmu.de>> wrote:
>
> Sounds like you want us to solve your homework. ;) --Andreas
>
>
> On 20.09.2015 23:36, Ismail Alyassiri wrote:
>
> {--
> Hello guys, I am trying to gather many proofs using Agda
> now that I
> am studying it on own.
> Bellow, I have a few problems I would love your help of
> solving. Thank
> you in advances guys.
>
>
>
>
> --}
> module list-todo where
>
> open import lib
>
> {- define this function so that it removes the last element
> from a list.
> If the list is empty, you can just return the empty list. -}
> removelast : ∀{ℓ}{A : Set ℓ} → 𝕃 A → 𝕃 A
> removelast = {!!}
>
> {- once you have a correct definition of removelast, the yellow
> highlighting
> for the following two tests will disappear. -}
> test1-removelast : removelast (1 :: 2 :: 3 :: 4 :: []) ≡ 1
> :: 2 :: 3 :: []
> test1-removelast = refl
>
> test2-removelast : removelast ('a' :: 'b' :: 'z' :: 'y' ::
> 'z' :: [])
> ≡ 'a' :: 'b' :: 'z' :: 'y' :: []
> test2-removelast = refl
>
> concat[] : ∀ {ℓ}{A : Set ℓ}(n : ℕ) → concat{A = A} (repeat n
> []) ≡ []
> concat[] = {!!}
>
> -- you have to implement removelast above in order to do
> this problem
> removelast++ : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → is-empty l2 ≡
> ff →
> removelast (l1 ++ l2) ≡ l1 ++ removelast l2
> removelast++ = {!!}
>
> shorter-trans : ∀{ℓ}{A : Set ℓ}(l1 l2 l3 : 𝕃 A) →
> l1 shorter l2 ≡ tt →
> l2 shorter l3 ≡ tt →
> l1 shorter l3 ≡ tt
> shorter-trans = {!!}
>
> list-all-any : ∀{ℓ}{A : Set ℓ}(pred : A → 𝔹)(l : 𝕃 A) →
> list-all pred l ≡ ~ (list-any (λ a → ~
> (pred a)) l)
> list-all-any = {!!}
>
> filter-list-all : ∀{ℓ}{A : Set ℓ}(pred : A → 𝔹)(l : 𝕃 A) →
> list-all pred l ≡ tt →
> filter pred l ≡ l
> filter-list-all = {!!}
>
> filter-member : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(pred
> : A →
> 𝔹)(l : 𝕃 A) →
> list-member eq a (filter pred l) ≡ tt →
> list-member eq a l ≡ tt ∧ pred a ≡ tt
> filter-member = {!!}
>
>
> zip-unzip : ∀{ℓ₁ ℓ₂}{A : Set ℓ₁}{B : Set ℓ₂}(x : 𝕃 A)(y :
> 𝕃 B) →
> length x ≡ length y → unzip (zip x y) ≡ x , y
> zip-unzip = {!!}
>
>
>
>
> _______________________________________________
> Agda mailing list
> Agda at lists.chalmers.se <mailto:Agda at lists.chalmers.se>
> https://lists.chalmers.se/mailman/listinfo/agda
>
>
>
> --
> Andreas Abel <>< Du bist der geliebte Mensch.
>
> Department of Computer Science and Engineering
> Chalmers and Gothenburg University, Sweden
>
> andreas.abel at gu.se <mailto:andreas.abel at gu.se>
> http://www2.tcs.ifi.lmu.de/~abel/
> _______________________________________________
> Agda mailing list
> Agda at lists.chalmers.se <mailto:Agda at lists.chalmers.se>
> https://lists.chalmers.se/mailman/listinfo/agda
>
>
--
Andreas Abel <>< Du bist der geliebte Mensch.
Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden
andreas.abel at gu.se
http://www2.tcs.ifi.lmu.de/~abel/
More information about the Agda
mailing list