[Agda] unsolved metas in Respects₂

Sergei Meshveliani mechvel at botik.ru
Mon Dec 16 16:38:21 CET 2013


Thank you.
Earlier, I tried a similar thing. But it was

  ( \ {p} {x} {y} → cong-<₁1 {p} {x} {y} ,
    \ {q} {x} {y} → cong-<₁2 {q} {x} {y}
  )

, and it was not type-checked.

------
Sergei



On Mon, 2013-12-16 at 16:01 +0100, Twan van Laarhoven wrote:
> For some reason Agda becomes happy if you write the implicit arguments:
> 
>      pp = (\{p} {x} {y} → cong-<₁1 {p} {x} {y})
>         , (\{q} {x} {y} → cong-<₁2 {q} {x} {y})
> 
> 
> Twan
> 
> On 15/12/13 21:56, Sergei Meshveliani wrote:
> > Please,
> > how to fix the below code?
> >
> > It defines  StrictTotalOrder  on  A × B,  where the comparison is by the
> > first component (so that B is a dummy factor).
> >
> > The  development Agda of November ~20 2013 MAlonzo
> > reports of
> >            unsolved metas  in the line of  " = (foo1 , foo2)".
> >
> > I have introduced several intermediate signatures -- to make sure in the
> > types, and wonder what else is needed to resolve this direct product
> > expression.
> >
> > Thanks,
> >
> > ------
> > Sergei
> >
> >
> > -------------------------------------------------------------------------
> > open import Level           using (Level; _⊔_)
> > open import Function        using (flip; _on_)
> > open import Relation.Binary using
> >       (Rel; Reflexive; Symmetric; Transitive; IsEquivalence;
> >        module IsEquivalence; _Respects_; _Respects₂_; Trichotomous;
> >        IsStrictTotalOrder; module IsStrictTotalOrder; StrictTotalOrder;
> >        module StrictTotalOrder
> >       )
> > open import Data.Product using (_×_; _,_; proj₁; proj₂)
> >
> >
> > stoForPairBy1 : ∀ {α α= α< β} → StrictTotalOrder α α= α< → Set β →
> >                                          StrictTotalOrder (α ⊔ β) α= α<
> > stoForPairBy1 {α} {α=} {α<} {β} stoA B =
> >                                     record{ Carrier            = A × B
> >                                           ; _≈_                = _=₁_
> >                                           ; _<_                = _<₁_
> >                                           ; isStrictTotalOrder = isSTO₁ }
> >     where
> >     open StrictTotalOrder stoA using ()
> >                renaming (Carrier to A; _≈_ to _=a_; _<_ to _<a_;
> >                                            isStrictTotalOrder to isSTO-A)
> >     open IsStrictTotalOrder isSTO-A using ()
> >                renaming (isEquivalence to aEquiv; trans to <a-trans;
> >                                 compare to aCompare; <-resp-≈ to <a-cong)
> >     open IsEquivalence aEquiv using ()
> >                    renaming (refl to aRefl; sym to aSym; trans to aTrans)
> >
> >     _=₁_ :  Rel (A × B) α=
> >     _=₁_ =  _=a_ on proj₁
> >
> >     _<₁_ :  Rel (A × B) α<
> >     _<₁_ =  _<a_ on proj₁
> >
> >     =₁refl : Reflexive _=₁_
> >     =₁refl = aRefl
> >
> >     =₁sym : Symmetric _=₁_
> >     =₁sym = aSym
> >
> >     =₁trans : Transitive _=₁_
> >     =₁trans = aTrans
> >
> >     =₁equiv : IsEquivalence _=₁_
> >     =₁equiv = record{ refl  = \ {x}         → =₁refl {x}
> >                     ; sym   = \ {x} {y}     → =₁sym {x} {y}
> >                     ; trans = \ {x} {y} {z} → =₁trans {x} {y} {z} }
> >
> >     <₁trans : Transitive _<₁_
> >     <₁trans = <a-trans
> >
> >     compare₁ : Trichotomous _=₁_ _<₁_
> >     compare₁ (a , _) (a' , _) =  aCompare a a'
> >
> >     <a-cong1 : {x : A} → (_<a_ x) Respects _=a_
> >     <a-cong1 = proj₁ <a-cong
> >
> >     <a-cong2 : {y : A} → (flip _<a_ y) Respects _=a_
> >     <a-cong2 = proj₂ <a-cong
> >
> >     cong-<₁1 : ∀ {p} → (_<₁_ p) Respects _=₁_
> >     cong-<₁1 {p1 , _} {q1 , _} {q1' , _} q=q' p<q =  <a-cong1 q=q' p<q
> >
> >     cong-<₁2 : ∀ {q} → (flip _<₁_ q) Respects _=₁_
> >     cong-<₁2 {q1 , _} {p1 , _} {p1' , _} p=p' p<q =  <a-cong2 p=p' p<q
> >
> >     cong-<₁ : _<₁_ Respects₂ _=₁_
> >                           -- {α ⊔ β} {α<} {α=} {A × B} _<₁_ _=₁_
> >     cong-<₁ = pp
> >         where
> >         foo1 : ∀ {p} → (_<₁_ p) Respects _=₁_
> >         foo1 {p} {q} {q'}= cong-<₁1 {p} {q} {q'}
> >
> >         foo2 : ∀ {q} → (flip _<₁_ q) Respects _=₁_
> >         foo2 {q} {p} {p'} =  cong-<₁2 {q} {p} {p'}
> >
> >         pp : (∀ {p} → (_<₁_ p) Respects _=₁_) ×
> >              (∀ {q} → (flip _<₁_ q) Respects _=₁_)
> >         pp = (foo1 , foo2)
> >
> >     isSTO₁ : IsStrictTotalOrder _=₁_ _<₁_
> >     isSTO₁ = record{ isEquivalence = =₁equiv
> >                    ; trans    = \ {x} {y} {z} → <₁trans {x} {y} {z}
> >                    ; compare  = compare₁
> >                    ; <-resp-≈ = cong-<₁
> >                    }
> >
> >
> > _______________________________________________
> > Agda mailing list
> > Agda at lists.chalmers.se
> > https://lists.chalmers.se/mailman/listinfo/agda
> >
> 
> _______________________________________________
> Agda mailing list
> Agda at lists.chalmers.se
> https://lists.chalmers.se/mailman/listinfo/agda
> 




More information about the Agda mailing list