[Agda] monot-minus for Nat
Nils Anders Danielsson
nad at chalmers.se
Sat Sep 15 19:29:09 CEST 2012
On 2012-09-15 18:13, Serge D. Mechveliani wrote:
> suc-comm : (m : Nat) -> (n : Nat) -> m + (suc n) == (suc m) + n
> monot.-right : (k m n : Nat) -> k <= m -> k .- n <= m .- n
> (1) Is there possible a simpler expression for suc-comm, monot.-right ?
You can prove suc-comm using the ring solver (see README.Nat), and a
more general variant of monot.-right can be found in Data.Nat.Properties
(∸-mono).
> (2) The last pattern for monot.-right is not accessible, because
> suc k <= m = 0 is not satisfiable.
> How to skip this pattern? or at least -- how to reduce its RHS
> (for example by setting () in an appropriate place) ?
As follows:
monot∸right (suc k) 0 (suc n) ()
--
/NAD
More information about the Agda
mailing list