[Agda] Yet another questions about equality
Permjacov Evgeniy
permeakra at gmail.com
Tue Feb 15 16:55:15 CET 2011
1) Let assume
infixr 1 _⊎_
data _⊎_ {ℓ₁ ℓ₂} (A : Set ℓ₁) (B : Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where
inj₁ : (x : A) → A ⊎ B
inj₂ : (y : B) → A ⊎ B
sum : ∀ {ℓ₁ ℓ₂ ℓ₃} {A : Set ℓ₁} {B : Set ℓ₂} {R : A ⊎ B → Set ℓ₃ }
→ ( (x : A) → R (inj₁ x) )
→ ( (y : B) → R (inj₂ y) )
→ (x : A ⊎ B ) → R x
sum c₁ c₂ (inj₁ l) = c₁ l
sum c₁ c₂ (inj₂ r) = c₂ r
how to prove
sum inj₁ inj₂ ≡ id ?
2) is it possible to prove
∀ {ℓ : Level} {A B : Set ℓ} {f g : A → B} → (∀ (a : A) → f a ≡ g a) →
f ≡ g
More information about the Agda
mailing list