[Agda] some yellow, for your amusement
Conor McBride
conor at strictlypositive.org
Fri Jul 25 12:24:23 CEST 2008
Dear friends
I append some comical scribblings that I dreamt up down the
pub and typed in this morning. Nothing to get excited about:
the kit all typechecks but the example at the end doesn't.
I think it's a bunch of unsolved constraints that are holding
things up. More particularly, I suspect that
f (x , y) = t
is not being solved (for f) in situations where
f x y = t
would be. Is that the trouble? If so, one possibly cheap,
possibly nasty fix is to solve a metavariable which is
functional over a record with another which is functional
over the individual fields. That way, the former reduces
to the latter without any weird poking about inside the
unification algorithm.
A more principled solution, also incorporating patterns
for records, may be worth seeking.
Just a passing thought...
Cheers
Conor
--------------------------------------------------------
module Shad where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
nrec : (P : Nat -> Set)(mz : P zero)(ms : (n : Nat) -> P n -> P (suc n))
(n : Nat) -> P n
nrec P mz ms zero = mz
nrec P mz ms (suc n) = ms n (nrec P mz ms n)
data One : Set where
void : One
record _*_ (S : Set)(T : S -> Set) : Set where
field
fst : S
snd : T fst
open module Sig' {S : Set}{T : S -> Set} = _*_ {S} {T}
_,_ : {S : Set}{T : S -> Set}(s : S) -> T s -> S * T
s , t = record {fst = s; snd = t}
_>_ : (S : Set)(T : S -> Set) -> Set
S > T = (s : S) -> T s
infixr 40 _*_
mutual
data Ctxt : Set -> Set1 where
E : Ctxt One
_<_ : {G : Set}{S : G -> Set} -> Ctxt G -> Type G S -> Ctxt (G * S)
data Type : (G : Set) -> (G -> Set) -> Set1 where
nat : {G : Set} -> Type G (\_ -> Nat)
pi : {G : Set}{S : G -> Set}{T : (G * S) -> Set} ->
Type G S -> Type (G * S) T -> Type G (\g -> (x : S g) -> T
(g , x))
data Var : (G : Set)(T : G -> Set) -> ((g : G) -> T g) -> Set1 where
top : {G : Set}{S : G -> Set} ->
Var (G * S) (\gs -> S (fst gs)) snd
pop : {G : Set}{S T : G -> Set}{x : (g : G) -> T g} ->
Var G T x -> Var (G * S) (\gs -> T (fst gs)) (\gs -> x (fst
gs))
data Term : (G : Set)(T : G -> Set) -> ((g : G) -> T g) -> Set1 where
ze : {G : Set} -> Term G (\_ -> Nat) (\_ -> zero)
su : {G : Set}{n : G -> Nat} -> Term G (\_ -> Nat) n ->
Term G (\_ -> Nat) (\g -> suc (n g))
lam : {G : Set}{S : G -> Set}{T : (G * S) -> Set}
{t : (g : G * S) -> T g} ->
Term (G * S) T t ->
Term G (\g -> (x : S g) -> T (g , x))
(\g x -> t (g , x))
var : {G : Set}{T : G -> Set}{x : (g : G) -> T g} ->
Var G T x -> Term G T x
app : {G : Set}{S : G -> Set}{T : (G * S) -> Set}
{f : (g : G) -> (s : S g) -> T (g , s)}
{s : (g : G) -> S g} ->
Term G (\g -> (s : S g) -> T (g , s)) f -> Term G S s ->
Term G (\g -> T (g , s g)) (\g -> f g (s g))
rec : {G : Set}{P : (G * \_ -> Nat) -> Set}
{mz : (g : G) -> P (g , zero)}
{ms : (g : G) -> (n : Nat) -> P (g , n) -> P (g , suc n)}
{n : G -> Nat} ->
Type (G * \_ -> Nat) P ->
Term G (\g -> P (g , zero)) mz ->
Term G (\g -> (n : Nat) -> P (g , n) -> P (g , suc n)) ms ->
Term G (\g -> Nat) n ->
Term G (\g -> P (g , n g)) \g ->
nrec (\n -> P (g , n)) (mz g) (ms g) (n g)
data TERM {G : Set}{T : G -> Set}(G' : Ctxt G)(T' : Type G T) : Set1
where
[_] : {t : (g : G) -> T g} -> Term G T t -> TERM G' T'
plus : {G : Set}{G' : Ctxt G} -> TERM G' (pi nat (pi nat nat))
plus = [ lam (lam (rec nat (var top ) (lam (lam (su (var top) ) ) )
(var (pop top) ) ) ) ]
More information about the Agda
mailing list