<div dir="ltr"><div>Hi Vlad,</div><div><br></div><div>All known issues with sized types being able to prove false should be listed here: <a href="https://github.com/agda/agda/issues?q=is%3Aissue+is%3Aopen+label%3Afalse+label%3Asized-types">https://github.com/agda/agda/issues?q=is%3Aissue+is%3Aopen+label%3Afalse+label%3Asized-types</a>. From those, the only one that does not immediately seem to involve infinity is <a href="https://github.com/agda/agda/issues/4483">https://github.com/agda/agda/issues/4483</a>, but it seems to me the issue is no longer valid on the current development version of Agda.</div><div><br></div><div>-- Jesper<br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, Oct 23, 2020 at 12:23 AM vlad <<a href="mailto:Vlad.Rusu@inria.fr">Vlad.Rusu@inria.fr</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Dear Agda developers,<br>
<br>
You're getting a lot of those recently - and thank you for the answers <br>
- but I have yet another question about sized types.<br>
<br>
if I'm not mistaken, all the proofs of ⊥ based in sized types discussed <br>
in the bug reports do syntactically use ∞, so I was wondering:<br>
<br>
is there any known proof of ⊥ where the size constant ∞ does not <br>
(syntactically) occur? Implicit ocurrences ({∞} or _ ), and renamings, <br>
are also forbidden.<br>
<br>
all the best,<br>
<br>
- Vlad<br>
<br>
<br>
<br>
_______________________________________________<br>
Agda mailing list<br>
<a href="mailto:Agda@lists.chalmers.se" target="_blank">Agda@lists.chalmers.se</a><br>
<a href="https://lists.chalmers.se/mailman/listinfo/agda" rel="noreferrer" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
</blockquote></div>