<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p>Thanks for all your comments. I've tried to compile it into a PR:
      <a class="moz-txt-link-freetext" href="https://github.com/agda/agda/pull/4914/">https://github.com/agda/agda/pull/4914/</a><br>
    </p>
    <div class="moz-cite-prefix">On 07.09.20 12:20, Manuel Bärenz wrote:<br>
    </div>
    <blockquote type="cite"
      cite="mid:d66b858e-d1ce-6bf2-66b5-7f0321b38ee3@enigmage.de">
      <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
      <p>Yes, that seems a good question to me as well.</p>
      <p>Relatedly: I wanted to start improving the docs, but the Github
        link is broken:
        <a class="moz-txt-link-freetext"
href="https://github.com/agda/agda/blob/v2.6.1/doc/user-manual/language/cubical.rst"
          moz-do-not-send="true">https://github.com/agda/agda/blob/v2.6.1/doc/user-manual/language/cubical.rst</a></p>
      <p>I reached the link from <a class="moz-txt-link-freetext"
          href="https://agda.readthedocs.io/en/v2.6.1/language/cubical.html"
          moz-do-not-send="true">https://agda.readthedocs.io/en/v2.6.1/language/cubical.html</a>
        <br>
      </p>
      <div class="moz-cite-prefix">On 05.09.20 14:06, Dan Krejsa wrote:<br>
      </div>
      <blockquote type="cite"
cite="mid:CAP7cd4CJJPcpg3CTzrfx70mJAr+c5so2EwqSPSF_Bfis3c6vkA@mail.gmail.com">
        <meta http-equiv="content-type" content="text/html;
          charset=UTF-8">
        <div dir="ltr">
          <div>Hi,</div>
          <div><br>
          </div>
          <div>Why isn't transp declared like this:</div>
          <div><br>
          </div>
          <div>
            <pre><span class="gmail-nf">transp</span> <span class="gmail-ow">:</span> <span class="gmail-ow">∀</span> <span class="gmail-o">{</span>ℓ<span class="gmail-o">}</span> <span class="gmail-o">(</span>A <span class="gmail-ow">:</span> I <span class="gmail-ow">→</span> I <span class="gmail-kt"><span class="gmail-ow">→ </span>Set</span> ℓ<span class="gmail-o">)</span> <span class="gmail-o">(</span>r <span class="gmail-ow">:</span> I<span class="gmail-o">)</span> <span class="gmail-o"><span class="gmail-ow">→ </span></span><span class="gmail-ow"></span>A i0<span class="gmail-o"> r</span> <span class="gmail-ow">→</span> A i1 r

</pre>
            <pre>with an intended usage that  'A s i1'  is definitionally independent of s ?
</pre>
          </div>
        </div>
        <br>
        <div class="gmail_quote">
          <div dir="ltr" class="gmail_attr">On Fri, Sep 4, 2020 at 6:17
            AM John Leo <<a href="mailto:leo@halfaya.org"
              moz-do-not-send="true">leo@halfaya.org</a>> wrote:<br>
          </div>
          <blockquote class="gmail_quote" style="margin:0px 0px 0px
            0.8ex;border-left:1px solid
            rgb(204,204,204);padding-left:1ex">
            <div dir="ltr">Thanks so much Anders for the detailed
              explanation! It's extremely helpful.
              <div><br>
              </div>
              <div>John</div>
            </div>
            <br>
            <div class="gmail_quote">
              <div dir="ltr" class="gmail_attr">On Thu, Sep 3, 2020 at
                11:09 PM Anders Mortberg <<a
                  href="mailto:andersmortberg@gmail.com" target="_blank"
                  moz-do-not-send="true">andersmortberg@gmail.com</a>>
                wrote:<br>
              </div>
              <blockquote class="gmail_quote" style="margin:0px 0px 0px
                0.8ex;border-left:1px solid
                rgb(204,204,204);padding-left:1ex">Yes, John's
                understanding of that very opaque error message is<br>
                correct. When checking c Agda will have to verify that
                whenever i1=i1<br>
                (that is "everywhere") then (λ i → e i) is a constant
                function. This<br>
                is clearly not the case as:<br>
                <br>
                (λ i → e i) /= (λ i → Bool)<br>
                <br>
                This is what the error message is trying to say, but e
                has been<br>
                unfolded too far and there is some mysterious
                metavariable _28.<br>
                <br>
                <br>
                Your understanding of what happens when r is i0 is also
                correct, in<br>
                that case the condition r=i1 is just i0=i1 which is
                absurd and there<br>
                is nothing to check as anything follows from an absurd
                assumption.<br>
                This is why a typechecks.<br>
                <br>
                <br>
                In general r is some element of dM(X), i.e. an element
                of the free De<br>
                Morgan algebra on some subset X of the dimension
                variables currently<br>
                in context. One way to check if some judgment holds when
                r=i1 is to<br>
                first convert r to disjunctive normal form and propagate
                the _=i1 all<br>
                the way down to the atoms. This gives us a big
                disjunction of<br>
                conjuncts where each conjunct corresponds to a list of
                substitutions.<br>
                For example if r is (i /\ j) \/ ~ k then r=i1 will
                reduce to<br>
                <br>
                ((i = i1) /\ (j = i1)) \/ (k = i0)<br>
                <br>
                To check that some judgment J holds in this context
                restriction<br>
                amounts to checking that it holds either when (i = i1)
                and (j = i1) or<br>
                when (k = i0). If I write G for the ambient context we
                hence need to<br>
                check<br>
                <br>
                G, (i = i1) /\ (j = i1) |- J<br>
                G, (k = i0) |- J<br>
                <br>
                which boils down to checking<br>
                <br>
                G |- J(i1/i)(i1/j)<br>
                G |- J(i0/k)<br>
                <br>
                I don't think Cubical Agda actually performs these
                substitutions as<br>
                it's too expensive to always substitute, but this
                intuitive algorithm<br>
                can maybe be helpful to understand how one can typecheck
                cubical<br>
                programs.<br>
                <br>
                --<br>
                Anders<br>
                <br>
                On Fri, Sep 4, 2020 at 1:05 AM John Leo <<a
                  href="mailto:leo@halfaya.org" target="_blank"
                  moz-do-not-send="true">leo@halfaya.org</a>> wrote:<br>
                ><br>
                > I do have one further point I'd like clarified. Is
                the check for the r=i1 condition for transp done only
                when r is not known to be i0 or is it always done? For
                example is the check run at all when transport p
                (defined as "transp (λ i → p i) i0") is called? I assume
                not. For example in the following code<br>
                ><br>
                > notnot : (b : Bool) → not (not b) ≡ b<br>
                > notnot true  = refl<br>
                > notnot false = refl<br>
                ><br>
                > e : Bool ≡ Bool<br>
                > e = isoToPath (iso not not notnot notnot)<br>
                ><br>
                > a = transp (λ i → e i) i0 true<br>
                > b = transp (λ _ → Bool) i1 true<br>
                > c = transp (λ i → e i) i1 true<br>
                ><br>
                > I get that "a" and "b" typecheck ("a" evaluates to
                false and "b" to true as expected) but "c" fails to
                typecheck with the following error, which I assume is
                due to "e" not being definitionally constant. But
                perhaps I'm still confused.<br>
                ><br>
                > primGlue Bool<br>
                > (λ .x →<br>
                >    (λ { (i = i0) → Bool , isoToEquiv (iso not not
                notnot notnot)<br>
                >       ; (i = i1) → Bool , idEquiv Bool<br>
                >       })<br>
                >    _ .fst)<br>
                > (λ .x →<br>
                >    (λ { (i = i0) → Bool , isoToEquiv (iso not not
                notnot notnot)<br>
                >       ; (i = i1) → Bool , idEquiv Bool<br>
                >       })<br>
                >    _ .snd)<br>
                > != Bool of type Type<br>
                > when checking that the expression transp (λ i → e
                i) i1 true has<br>
                > type _28<br>
                ><br>
                ><br>
                ><br>
                > _______________________________________________<br>
                > Agda mailing list<br>
                > <a href="mailto:Agda@lists.chalmers.se"
                  target="_blank" moz-do-not-send="true">Agda@lists.chalmers.se</a><br>
                > <a
                  href="https://lists.chalmers.se/mailman/listinfo/agda"
                  rel="noreferrer" target="_blank"
                  moz-do-not-send="true">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
              </blockquote>
            </div>
            _______________________________________________<br>
            Agda mailing list<br>
            <a href="mailto:Agda@lists.chalmers.se" target="_blank"
              moz-do-not-send="true">Agda@lists.chalmers.se</a><br>
            <a href="https://lists.chalmers.se/mailman/listinfo/agda"
              rel="noreferrer" target="_blank" moz-do-not-send="true">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
          </blockquote>
        </div>
        <br>
        <fieldset class="mimeAttachmentHeader"></fieldset>
        <pre class="moz-quote-pre" wrap="">_______________________________________________
Agda mailing list
<a class="moz-txt-link-abbreviated" href="mailto:Agda@lists.chalmers.se" moz-do-not-send="true">Agda@lists.chalmers.se</a>
<a class="moz-txt-link-freetext" href="https://lists.chalmers.se/mailman/listinfo/agda" moz-do-not-send="true">https://lists.chalmers.se/mailman/listinfo/agda</a>
</pre>
      </blockquote>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <pre class="moz-quote-pre" wrap="">_______________________________________________
Agda mailing list
<a class="moz-txt-link-abbreviated" href="mailto:Agda@lists.chalmers.se">Agda@lists.chalmers.se</a>
<a class="moz-txt-link-freetext" href="https://lists.chalmers.se/mailman/listinfo/agda">https://lists.chalmers.se/mailman/listinfo/agda</a>
</pre>
    </blockquote>
  </body>
</html>