<div dir="ltr"><div>Hi,</div><div><br></div><div>> Why isn't transp declared like this:</div><div>> <span>transp</span> <span>:</span> <span>∀</span> <span>{</span>ℓ<span>}</span> <span>(</span>A <span>:</span> I <span>→</span> I <span><span>→ </span>Set</span> ℓ<span>)</span> <span>(</span>r <span>:</span> I<span>)</span> <span><span>→ </span></span><span></span>A i0<span> r</span> <span>→</span> A i1 r</div><div><br></div><div>If one switches the order of the arguments of A, one gets instead</div><div><br></div><div>transp: <span>∀</span> <span>{</span>ℓ<span>}</span> <span>(</span>A <span>:</span> I <span>→</span> I <span><span>→ </span>Set</span> ℓ<span>)</span> <span>(</span>r <span>:</span> I<span>)</span> <span><span>→ </span></span><span></span>A <span>r i0</span> <span>→</span> A r i1</div><div><br></div><div>with the 'intended usage' that 'A i1 s' is definitionally independent of s.<br></div><div><br></div><div>Ignoring that condition, that looks just like a specialization of 'transport' to</div><div>the path (\i -> A r i). Which I'm guessing means that it is not strong enough,</div><div>assuming transp is supposed to be stronger than transport.</div><div><br></div><div>From my point of view, the weird thing about the actual 'tansp' type</div><div><br></div><div><pre><span class="gmail-nf">transp</span> <span class="gmail-ow">:</span> <span class="gmail-ow">∀</span> <span class="gmail-o">{</span>ℓ<span class="gmail-o">}</span> <span class="gmail-o">(</span>A <span class="gmail-ow">:</span> I <span class="gmail-ow">→</span> <span class="gmail-kt">Set</span> ℓ<span class="gmail-o">)</span> <span class="gmail-o">(</span>r <span class="gmail-ow">:</span> I<span class="gmail-o">)</span> <span class="gmail-o">(</span>a <span class="gmail-ow">:</span> A i0<span class="gmail-o">)</span> <span class="gmail-ow">→</span> A i1<br><br></pre><pre><span style="font-family:arial,sans-serif">is one is left wondering, if A is held fix and r varies, how is<br><br>'transp A r : A i0<span class="gmail-o"></span> <span class="gmail-ow">→</span> A i1' supposed to vary with r?<br><br></span></pre><pre><span style="font-family:arial,sans-serif">It seems in the intended usage is never that 'A is held fixed and r varies', so why<br>not encode that dependence by making the dependence of A on r explicit?<br></span></pre><pre><span style="font-family:arial,sans-serif">- Dan<br></span></pre></div><div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Sep 7, 2020 at 3:37 AM Manuel Bärenz <<a href="mailto:manuel@enigmage.de">manuel@enigmage.de</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div>
<p>Thanks for all your comments. I've tried to compile it into a PR:
<a href="https://github.com/agda/agda/pull/4914/" target="_blank">https://github.com/agda/agda/pull/4914/</a><br>
</p>
<div>On 07.09.20 12:20, Manuel Bärenz wrote:<br>
</div>
<blockquote type="cite">
<p>Yes, that seems a good question to me as well.</p>
<p>Relatedly: I wanted to start improving the docs, but the Github
link is broken:
<a href="https://github.com/agda/agda/blob/v2.6.1/doc/user-manual/language/cubical.rst" target="_blank">https://github.com/agda/agda/blob/v2.6.1/doc/user-manual/language/cubical.rst</a></p>
<p>I reached the link from <a href="https://agda.readthedocs.io/en/v2.6.1/language/cubical.html" target="_blank">https://agda.readthedocs.io/en/v2.6.1/language/cubical.html</a>
<br>
</p>
<div>On 05.09.20 14:06, Dan Krejsa wrote:<br>
</div>
<blockquote type="cite">
<div dir="ltr">
<div>Hi,</div>
<div><br>
</div>
<div>Why isn't transp declared like this:</div>
<div><br>
</div>
<div>
<pre><span>transp</span> <span>:</span> <span>∀</span> <span>{</span>ℓ<span>}</span> <span>(</span>A <span>:</span> I <span>→</span> I <span><span>→ </span>Set</span> ℓ<span>)</span> <span>(</span>r <span>:</span> I<span>)</span> <span><span>→ </span></span><span></span>A i0<span> r</span> <span>→</span> A i1 r
</pre>
<pre>with an intended usage that 'A s i1' is definitionally independent of s ?
</pre>
</div>
</div>
<br>
<div class="gmail_quote">
<div dir="ltr" class="gmail_attr">On Fri, Sep 4, 2020 at 6:17
AM John Leo <<a href="mailto:leo@halfaya.org" target="_blank">leo@halfaya.org</a>> wrote:<br>
</div>
<blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div dir="ltr">Thanks so much Anders for the detailed
explanation! It's extremely helpful.
<div><br>
</div>
<div>John</div>
</div>
<br>
<div class="gmail_quote">
<div dir="ltr" class="gmail_attr">On Thu, Sep 3, 2020 at
11:09 PM Anders Mortberg <<a href="mailto:andersmortberg@gmail.com" target="_blank">andersmortberg@gmail.com</a>>
wrote:<br>
</div>
<blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Yes, John's
understanding of that very opaque error message is<br>
correct. When checking c Agda will have to verify that
whenever i1=i1<br>
(that is "everywhere") then (λ i → e i) is a constant
function. This<br>
is clearly not the case as:<br>
<br>
(λ i → e i) /= (λ i → Bool)<br>
<br>
This is what the error message is trying to say, but e
has been<br>
unfolded too far and there is some mysterious
metavariable _28.<br>
<br>
<br>
Your understanding of what happens when r is i0 is also
correct, in<br>
that case the condition r=i1 is just i0=i1 which is
absurd and there<br>
is nothing to check as anything follows from an absurd
assumption.<br>
This is why a typechecks.<br>
<br>
<br>
In general r is some element of dM(X), i.e. an element
of the free De<br>
Morgan algebra on some subset X of the dimension
variables currently<br>
in context. One way to check if some judgment holds when
r=i1 is to<br>
first convert r to disjunctive normal form and propagate
the _=i1 all<br>
the way down to the atoms. This gives us a big
disjunction of<br>
conjuncts where each conjunct corresponds to a list of
substitutions.<br>
For example if r is (i /\ j) \/ ~ k then r=i1 will
reduce to<br>
<br>
((i = i1) /\ (j = i1)) \/ (k = i0)<br>
<br>
To check that some judgment J holds in this context
restriction<br>
amounts to checking that it holds either when (i = i1)
and (j = i1) or<br>
when (k = i0). If I write G for the ambient context we
hence need to<br>
check<br>
<br>
G, (i = i1) /\ (j = i1) |- J<br>
G, (k = i0) |- J<br>
<br>
which boils down to checking<br>
<br>
G |- J(i1/i)(i1/j)<br>
G |- J(i0/k)<br>
<br>
I don't think Cubical Agda actually performs these
substitutions as<br>
it's too expensive to always substitute, but this
intuitive algorithm<br>
can maybe be helpful to understand how one can typecheck
cubical<br>
programs.<br>
<br>
--<br>
Anders<br>
<br>
On Fri, Sep 4, 2020 at 1:05 AM John Leo <<a href="mailto:leo@halfaya.org" target="_blank">leo@halfaya.org</a>> wrote:<br>
><br>
> I do have one further point I'd like clarified. Is
the check for the r=i1 condition for transp done only
when r is not known to be i0 or is it always done? For
example is the check run at all when transport p
(defined as "transp (λ i → p i) i0") is called? I assume
not. For example in the following code<br>
><br>
> notnot : (b : Bool) → not (not b) ≡ b<br>
> notnot true = refl<br>
> notnot false = refl<br>
><br>
> e : Bool ≡ Bool<br>
> e = isoToPath (iso not not notnot notnot)<br>
><br>
> a = transp (λ i → e i) i0 true<br>
> b = transp (λ _ → Bool) i1 true<br>
> c = transp (λ i → e i) i1 true<br>
><br>
> I get that "a" and "b" typecheck ("a" evaluates to
false and "b" to true as expected) but "c" fails to
typecheck with the following error, which I assume is
due to "e" not being definitionally constant. But
perhaps I'm still confused.<br>
><br>
> primGlue Bool<br>
> (λ .x →<br>
> (λ { (i = i0) → Bool , isoToEquiv (iso not not
notnot notnot)<br>
> ; (i = i1) → Bool , idEquiv Bool<br>
> })<br>
> _ .fst)<br>
> (λ .x →<br>
> (λ { (i = i0) → Bool , isoToEquiv (iso not not
notnot notnot)<br>
> ; (i = i1) → Bool , idEquiv Bool<br>
> })<br>
> _ .snd)<br>
> != Bool of type Type<br>
> when checking that the expression transp (λ i → e
i) i1 true has<br>
> type _28<br>
><br>
><br>
><br>
> _______________________________________________<br>
> Agda mailing list<br>
> <a href="mailto:Agda@lists.chalmers.se" target="_blank">Agda@lists.chalmers.se</a><br>
> <a href="https://lists.chalmers.se/mailman/listinfo/agda" rel="noreferrer" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
</blockquote>
</div>
_______________________________________________<br>
Agda mailing list<br>
<a href="mailto:Agda@lists.chalmers.se" target="_blank">Agda@lists.chalmers.se</a><br>
<a href="https://lists.chalmers.se/mailman/listinfo/agda" rel="noreferrer" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
</blockquote>
</div>
<br>
<fieldset></fieldset>
<pre>_______________________________________________
Agda mailing list
<a href="mailto:Agda@lists.chalmers.se" target="_blank">Agda@lists.chalmers.se</a>
<a href="https://lists.chalmers.se/mailman/listinfo/agda" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a>
</pre>
</blockquote>
<br>
<fieldset></fieldset>
<pre>_______________________________________________
Agda mailing list
<a href="mailto:Agda@lists.chalmers.se" target="_blank">Agda@lists.chalmers.se</a>
<a href="https://lists.chalmers.se/mailman/listinfo/agda" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a>
</pre>
</blockquote>
</div>
_______________________________________________<br>
Agda mailing list<br>
<a href="mailto:Agda@lists.chalmers.se" target="_blank">Agda@lists.chalmers.se</a><br>
<a href="https://lists.chalmers.se/mailman/listinfo/agda" rel="noreferrer" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
</blockquote></div>