<div dir="ltr"><div>Hi Michel,</div><div><br></div><div>Here's a hint for sym: starting from `x ≡ y`, if you can prove that `P z = z ≡ x` holds for `z = x`, then you can use `subst` to prove that it also holds for `z = y`. For `trans`, there is a similar trick but now you need to choose `P` to be an implication between two identity types.</div><div><br></div><div>-- Jesper<br></div><div><br></div><div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sun, Mar 22, 2020 at 12:38 PM Michel Levy <<a href="mailto:michel.levy.imag@free.fr">michel.levy.imag@free.fr</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div>
<p>In the paper <a href="http://www.cse.chalmers.se/~peterd/papers/AgdaLectureNotes2018.pdf" target="_blank">AgdaLectureNotes2018</a>
of Peter Dybjer, there is this exercise page 19</p>
<p><span style="font-size:16.6043px;font-family:serif">Exercise:
prove symmetry and transitivity using subst but without using
pattern matching</span><span style="font-size:16.6043px;font-family:serif">! <br>
</span></p>
<p><span style="font-size:16.6043px;font-family:serif">I
don't find the solution, can you help me to solve it ?<br>
</span></p>
<div>-- <br>
courriel : <a href="mailto:michel.levy.imag@free.fr" target="_blank">michel.levy.imag@free.fr</a>
<br>
mobile : 06 59 13 42 53<br>
web : <a href="http://michel.levy.imag.free.fr" target="_blank">michel.levy.imag.free.fr</a> </div>
</div>
_______________________________________________<br>
Agda mailing list<br>
<a href="mailto:Agda@lists.chalmers.se" target="_blank">Agda@lists.chalmers.se</a><br>
<a href="https://lists.chalmers.se/mailman/listinfo/agda" rel="noreferrer" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
</blockquote></div>