<div dir="ltr">Thanks!<div><br></div><div>What would help enormously is if I could do the same thing, *searching the entire standard library*. This basically requires someone to put together a huge import list and put it in a file (preferably available with the standard library). Has anyone done so, or could this be whipped together quickly?</div><div><br></div><div>Cheers, -- P</div></div><div class="gmail_extra"><br clear="all"><div><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr">. \ Philip Wadler, Professor of Theoretical Computer Science,<br>. /\ School of Informatics, University of Edinburgh<br></div><div>. / \ and Senior Research Fellow, IOHK<br></div><div dir="ltr">. <span><a href="http://homepages.inf.ed.ac.uk/wadler/" target="_blank">http://homepages.inf.ed.ac.uk/wadler/</a></span></div></div></div></div></div>
<br><div class="gmail_quote">On 15 February 2018 at 14:01, Guillaume Allais <span dir="ltr"><<a href="mailto:guillaume.allais@ens-lyon.org" target="_blank">guillaume.allais@ens-lyon.org</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div text="#000000" bgcolor="#FFFFFF">
<tt>Hi Phil,<br>
<br>
There's a *very basic* search functionality which you can invoke<br>
from emacs using C-c C-z. You can then input a space-separated<br>
list of identifiers and strings and Agda will return all the<br>
identifiers which:<br>
- are in scope in the current module<br>
- contain in their type *all* of the identifiers mentioned<br>
- contain as substring *all* of the mentioned strings<br>
<br>
For instance, using a fairly recent version of the stdlib, from<br>
the module containing:<br>
<br>
==============================<wbr>=============<br>
open import Data.Nat<br>
open import Data.Nat.Properties</tt><br>
<tt><tt>==============================<wbr>=============</tt><br>
<br>
C-c C-z RET _+_ _*_ RET<br>
<br>
will return<br>
<br>
</tt><tt><tt>==============================<wbr>=============<br>
Definitions about _+_, _*_<br>
*-+-isCommutativeSemiring<br>
: .Algebra.Structures.<wbr>IsCommutativeSemiring<br>
.Agda.Builtin.Equality._≡_ _+_ _*_ 0 1<br>
*-cancelˡ-≡<br>
: {i j : ℕ} (k : ℕ) →<br>
i + k * i .Agda.Builtin.Equality.≡ j + k * j →<br>
i .Agda.Builtin.Equality.≡ j<br>
*-distrib-+<br>
: (.Agda.Builtin.Equality._≡_<br>
.Algebra.FunctionProperties.<wbr>DistributesOver _*_)<br>
_+_<br>
*-distribʳ-+<br>
: (.Agda.Builtin.Equality._≡_<br>
.Algebra.FunctionProperties.<wbr>DistributesOverʳ _*_)<br>
_+_<br>
*-distribˡ-+<br>
: (.Agda.Builtin.Equality._≡_<br>
.Algebra.FunctionProperties.<wbr>DistributesOverˡ _*_)<br>
_+_<br>
+-*-suc : (m n : ℕ) → m * suc n .Agda.Builtin.Equality.≡ m + m
* n<br>
^-distribˡ-+-*<br>
: (m n p : ℕ) →<br>
(m ^ (n + p)) .Agda.Builtin.Equality.≡ (m ^ n) * (m
^ p)<br>
distribʳ-*-+<br>
: (.Agda.Builtin.Equality._≡_<br>
.Algebra.FunctionProperties.<wbr>DistributesOverʳ _*_)<br>
_+_<br>
im≡jm+n⇒[i∸j]m≡n<br>
: (i j m n : ℕ) →<br>
i * m .Agda.Builtin.Equality.≡ j * m + n →<br>
(i ∸ j) * m .Agda.Builtin.Equality.≡ n<br>
isCommutativeSemiring<br>
: .Algebra.Structures.<wbr>IsCommutativeSemiring<br>
.Agda.Builtin.Equality._≡_ _+_ _*_ 0 1<br>
</tt></tt><tt>==============================<wbr>=============<br>
<br>
and </tt><tt><tt>C-c C-z RET _+_ _*_ "distr" RET</tt><br>
will filter definitions which are not about distributivity:<br>
<br>
</tt><tt><tt>==============================<wbr>=============<br>
</tt></tt><tt><tt>Definitions about _+_, _*_, "distr"<br>
*-distrib-+<br>
: (.Agda.Builtin.Equality._≡_<br>
.Algebra.FunctionProperties.<wbr>DistributesOver _*_)<br>
_+_<br>
*-distribʳ-+<br>
: (.Agda.Builtin.Equality._≡_<br>
.Algebra.FunctionProperties.<wbr>DistributesOverʳ _*_)<br>
_+_<br>
*-distribˡ-+<br>
: (.Agda.Builtin.Equality._≡_<br>
.Algebra.FunctionProperties.<wbr>DistributesOverˡ _*_)<br>
_+_<br>
^-distribˡ-+-*<br>
: (m n p : ℕ) →<br>
(m ^ (n + p)) .Agda.Builtin.Equality.≡ (m ^ n) * (m ^ p)<br>
distribʳ-*-+<br>
: (.Agda.Builtin.Equality._≡_<br>
.Algebra.FunctionProperties.<wbr>DistributesOverʳ _*_)<br>
_+_<br>
==============================<wbr>=============</tt><br>
<br>
This search function respect the normalisation modifiers (that<br>
is the (C-u)* you can type before most commands) and will search<br>
types according to the normalisation level you've requested (and<br>
print results accordingly).<br>
<br>
Cheers,<br>
--<br>
gallais<br>
<br>
<br>
</tt><div><div class="h5"><tt><tt></tt></tt>
<div class="m_-296081957163068206moz-cite-prefix">On 15/02/18 16:52, Philip Wadler wrote:<br>
</div>
</div></div><blockquote type="cite"><div><div class="h5">
<div dir="ltr">Is there anything like Hoogle for Agda? It would
save newbies like me a *lot* of time. Cheers, -- P<br>
<div>
<div><br>
</div>
<div>
<div class="m_-296081957163068206gmail_signature">
<div dir="ltr">
<div>
<div dir="ltr">. \ Philip Wadler, Professor of
Theoretical Computer Science,<br>
. /\ School of Informatics, University of
Edinburgh<br>
</div>
<div>. / \ and Senior Research Fellow, IOHK<br>
</div>
<div dir="ltr">. <span><a href="http://homepages.inf.ed.ac.uk/wadler/" target="_blank">http://homepages.inf.ed.ac.uk/<wbr>wadler/</a></span></div>
</div>
</div>
</div>
</div>
</div>
</div>
<br>
<fieldset class="m_-296081957163068206mimeAttachmentHeader"></fieldset>
<br>
</div></div><pre>The University of Edinburgh is a charitable body, registered in
Scotland, with registration number SC005336.
</pre>
<br>
<fieldset class="m_-296081957163068206mimeAttachmentHeader"></fieldset>
<br>
<pre>______________________________<wbr>_________________
Agda mailing list
<a class="m_-296081957163068206moz-txt-link-abbreviated" href="mailto:Agda@lists.chalmers.se" target="_blank">Agda@lists.chalmers.se</a>
<a class="m_-296081957163068206moz-txt-link-freetext" href="https://lists.chalmers.se/mailman/listinfo/agda" target="_blank">https://lists.chalmers.se/<wbr>mailman/listinfo/agda</a>
</pre>
</blockquote>
<br>
</div>
<br>______________________________<wbr>_________________<br>
Agda mailing list<br>
<a href="mailto:Agda@lists.chalmers.se">Agda@lists.chalmers.se</a><br>
<a href="https://lists.chalmers.se/mailman/listinfo/agda" rel="noreferrer" target="_blank">https://lists.chalmers.se/<wbr>mailman/listinfo/agda</a><br>
<br></blockquote></div><br></div>