<div dir="ltr"><div>The improved reflection, which you can read about here:</div><div><br></div><a href="http://agda.readthedocs.org/en/latest/language/reflection.html">http://agda.readthedocs.org/en/latest/language/reflection.html</a><br><div><br></div><div>/ Ulf</div></div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Apr 11, 2016 at 10:08 PM, Bradley Hardy <span dir="ltr"><<a href="mailto:bch29@cam.ac.uk" target="_blank">bch29@cam.ac.uk</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">By the new tactic language, do you mean the improved reflection capabilities in 2.5, or has something more Coq-like recently been implemented?<br>
<div class="HOEnZb"><div class="h5"><br>
<br>
> On 11 Apr 2016, at 20:14, Andreas Abel <<a href="mailto:andreas.abel@ifi.lmu.de">andreas.abel@ifi.lmu.de</a>> wrote:<br>
><br>
> Since (f n) does not reduce to 0 (both equations are more specific), you have to split on n.<br>
><br>
> You could implement a tactic using Agda's new tactic language that does such routine jobs for you.<br>
><br>
> On 11.04.2016 18:28, Sergei Meshveliani wrote:<br>
>> Hello, All.<br>
>><br>
>> I have the following question.<br>
>> The program<br>
>><br>
>> -------------------------------------------------<br>
>> open import Relation.Binary.PropositionalEquality<br>
>> open import Data.Nat<br>
>><br>
>> f : ℕ → ℕ<br>
>> f 0 = 0<br>
>> f (suc _) = 0<br>
>><br>
>> theorem : ∀ n → f n ≡ 0<br>
>> theorem _ = refl<br>
>> --------------------------------------------------<br>
>><br>
>> is not type-checked, because Agda expects the two proofs to be given.<br>
>> One for the case 0, another for the case (suc _).<br>
>> Both proofs can be set `refl', that is -- by normalization.<br>
>><br>
>> Could the type checker check the proof by a single `refl', by<br>
>> normalizing each branch?<br>
>> (this will simplify many proofs).<br>
>><br>
>> Thanks,<br>
>><br>
>> ------<br>
>> Sergei<br>
>><br>
>> _______________________________________________<br>
>> Agda mailing list<br>
>> <a href="mailto:Agda@lists.chalmers.se">Agda@lists.chalmers.se</a><br>
>> <a href="https://lists.chalmers.se/mailman/listinfo/agda" rel="noreferrer" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
>><br>
><br>
><br>
> --<br>
> Andreas Abel <>< Du bist der geliebte Mensch.<br>
><br>
> Department of Computer Science and Engineering<br>
> Chalmers and Gothenburg University, Sweden<br>
><br>
> <a href="mailto:andreas.abel@gu.se">andreas.abel@gu.se</a><br>
> <a href="http://www2.tcs.ifi.lmu.de/~abel/" rel="noreferrer" target="_blank">http://www2.tcs.ifi.lmu.de/~abel/</a><br>
> _______________________________________________<br>
> Agda mailing list<br>
> <a href="mailto:Agda@lists.chalmers.se">Agda@lists.chalmers.se</a><br>
> <a href="https://lists.chalmers.se/mailman/listinfo/agda" rel="noreferrer" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
<br>
_______________________________________________<br>
Agda mailing list<br>
<a href="mailto:Agda@lists.chalmers.se">Agda@lists.chalmers.se</a><br>
<a href="https://lists.chalmers.se/mailman/listinfo/agda" rel="noreferrer" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
</div></div></blockquote></div><br></div>