<div dir="ltr"><br><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Nov 3, 2014 at 2:38 PM, Arseniy Alekseyev <span dir="ltr">&lt;<a href="mailto:arseniy.alekseyev@gmail.com" target="_blank">arseniy.alekseyev@gmail.com</a>&gt;</span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><span class="">
</span>You are right, there is not much point. I was trying to point out that<br>
it&#39;s the &quot;proper expression&quot; part that makes `with` complicated.<br>
<br>
Unfortunately, that&#39;s not even true. In the following example, I don&#39;t<br>
think you can fill the holes.<br>
<br>
f : Bool → Bool<br>
f x = true where<br>
<br>
  z : Bool → Bool<br>
  z true = x<br>
  z false = x<br>
<br>
  y : ∀ q → x ≡ z q<br>
  y with x<br>
  y | true = {!!}<br>
  y | false = {!!}<br>
<div class=""><div class="h5"><br>
<br></div></div></blockquote><div><br></div><div>I&#39;m not entirely sure why you would expect that approach to be fruitful. Essentially, what you&#39;re trying to do is unwind the computational nature of `z&#39;, which is defined by case analysis on its argument (in this case q). To trigger the rules, you would have to bring q into scope and inspect q, which would then lead to `z true&#39; and `z false&#39; in the equations, respectively, and Agda will then go on to normalize the goals as `x \== x&#39;<br><br><span style="font-family:courier new,monospace">f : Bool → Bool<br>f x = true where<br>  z : Bool → Bool<br>  z true = x<br>  z false = x<br><br>  y : ∀ q → x ≡ z q<br>  y true = {!!} -- Goal: x </span><span style="font-family:courier new,monospace">≡ x</span><br><span style="font-family:courier new,monospace"><span style="font-family:courier new,monospace"></span>  y false = {!!}</span><span style="font-family:courier new,monospace"> -- Goal: x </span><span style="font-family:courier new,monospace">≡ x</span><br><br></div><div>I have actually been thinking about writing a blog post targeted at newbies (such as myself) on the sometimes unintuitive behaviour of `with&#39; (and in particular, `rewrite&#39;). Should anyone be interested I can send a link on this email chain once I have written it.<br></div><div><br></div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div class=""><div class="h5">
On 3 November 2014 10:59, Andreas Abel &lt;<a href="mailto:andreas.abel@ifi.lmu.de">andreas.abel@ifi.lmu.de</a>&gt; wrote:<br>
&gt; On 03.11.2014 09:47, Arseniy Alekseyev wrote:<br>
&gt;&gt; I think the problem goes away if you<br>
&gt;&gt; only use `with x` where `x` is a variable.<br>
&gt;<br>
&gt; Mmh, why use `with` at all then?  You could directly split on the variable<br>
&gt; `x`.  I thought the only reason to use `with` was when you wanted to case on<br>
&gt; a proper expression and refine your type in the with-branches...<br>
&gt;<br>
&gt;<br>
&gt;<br>
&gt; On 03.11.2014 09:47, Arseniy Alekseyev wrote:<br>
&gt;&gt;<br>
&gt;&gt; Indeed that&#39;s the usual Agda behaviour.<br>
&gt;&gt; Here the reason seems to be an additional occurrence of `lookup k ps`<br>
&gt;&gt; in the context produced by pattern-match on `no`.<br>
&gt;&gt; You see, `with expr` only rewrites the occurrences of `expr` present<br>
&gt;&gt; in the enclosing context, so the new occurrences inside the body of<br>
&gt;&gt; `with` don&#39;t get rewritten (and you do want it rewritten in this<br>
&gt;&gt; case).<br>
&gt;&gt;<br>
&gt;&gt; I do agree this is confusing. I think the problem goes away if you<br>
&gt;&gt; only use `with x` where `x` is a variable. That makes `with` much less<br>
&gt;&gt; useful though. You can also avoid `with` altogether and write the<br>
&gt;&gt; helper functions by hand (that&#39;s what `with` is doing after all!).<br>
&gt;&gt;<br>
&gt;&gt; On 2 November 2014 17:14,  &lt;<a href="mailto:mechvel@scico.botik.ru">mechvel@scico.botik.ru</a>&gt; wrote:<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt; People,<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt; Having the proof<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt;    prove : (k∈ks : k ∈ ks) → proj₂ (lookupIf∈ k (p ∷ ps) k∈k&#39;:ks) ≡<br>
&gt;&gt;&gt;                              proj₂ (lookupIf∈ k ps k∈ks)<br>
&gt;&gt;&gt;    prove k∈ks  with  k ≟ k&#39;                                           --<br>
&gt;&gt;&gt; (I)<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt;    ... | yes k≡k&#39; =  ⊥-elim $ k≉k&#39; k≡k&#39;<br>
&gt;&gt;&gt;    ... | no _     with  lookup k ps<br>
&gt;&gt;&gt;    ...                | inj₁ _    =  PE.refl<br>
&gt;&gt;&gt;    ...                | inj₂ k∉ks =  ⊥-elim $ k∉ks k∈ks<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt; (I do not give the complete code),<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt; I try to rewrite it in a bit simpler way by joining it into one `with&#39;<br>
&gt;&gt;&gt; clause:<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt;    prove k∈ks  with  k ≟ k&#39; | lookup k ps                              --<br>
&gt;&gt;&gt; (II)<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt;    ... | yes k≡k&#39; | _         =  ⊥-elim $ k≉k&#39; k≡k&#39;<br>
&gt;&gt;&gt;    ... | no _     | inj₁ _    =  PE.refl<br>
&gt;&gt;&gt;    ... | no _     | inj₂ k∉ks =  ⊥-elim $ k∉ks k∈ks<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt; (I) is type-checked, and (II) is not.<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt; Is this natural for Agda to decide so?<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt; (I have spent 4 hours trying to prove a similar real and evident example.<br>
&gt;&gt;&gt; Then tried to split `with&#39; into two, and this has succeeded).<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt; Thanks,<br>
&gt;&gt;&gt;<br>
&gt;&gt;&gt; ------<br>
&gt;&gt;&gt; Sergei<br>
&gt;&gt;&gt; _______________________________________________<br>
&gt;&gt;&gt; Agda mailing list<br>
&gt;&gt;&gt; <a href="mailto:Agda@lists.chalmers.se">Agda@lists.chalmers.se</a><br>
&gt;&gt;&gt; <a href="https://lists.chalmers.se/mailman/listinfo/agda" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
&gt;&gt;<br>
&gt;&gt; _______________________________________________<br>
&gt;&gt; Agda mailing list<br>
&gt;&gt; <a href="mailto:Agda@lists.chalmers.se">Agda@lists.chalmers.se</a><br>
&gt;&gt; <a href="https://lists.chalmers.se/mailman/listinfo/agda" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
&gt;&gt;<br>
&gt;<br>
&gt;<br>
&gt; --<br>
&gt; Andreas Abel  &lt;&gt;&lt;      Du bist der geliebte Mensch.<br>
&gt;<br>
&gt; Department of Computer Science and Engineering<br>
&gt; Chalmers and Gothenburg University, Sweden<br>
&gt;<br>
&gt; <a href="mailto:andreas.abel@gu.se">andreas.abel@gu.se</a><br>
&gt; <a href="http://www2.tcs.ifi.lmu.de/~abel/" target="_blank">http://www2.tcs.ifi.lmu.de/~abel/</a><br>
_______________________________________________<br>
Agda mailing list<br>
<a href="mailto:Agda@lists.chalmers.se">Agda@lists.chalmers.se</a><br>
<a href="https://lists.chalmers.se/mailman/listinfo/agda" target="_blank">https://lists.chalmers.se/mailman/listinfo/agda</a><br>
</div></div></blockquote></div><br><br clear="all"><br>-- <br><div class="gmail_signature"><div dir="ltr"><div>Christopher Jenkins<br>Computer Science 2013<br>Trinity University</div></div></div>
</div></div>