{-# OPTIONS --sized-types #-} module ZilibowitzRubenHenner4 where open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Size data ℕ : {_ : Size} -> Set where zero : ∀ {size} → ℕ {↑ size} suc : ∀ {size} → ℕ {size} → ℕ {↑ size} {- data _≤_ : Rel (ℕ {∞}) where z≤n : ∀ {sm sn} {n : ℕ {sn}} → zero {sm} ≤ n s≤s : ∀ {sm sn} {m : ℕ {sm}} {n : ℕ {sn}} (m≤n : m ≤ n) → suc {sm} m ≤ suc {sn} n -} data _≤_ : Rel (ℕ {∞}) where z≤n : ∀ {n : ℕ {∞}} → zero {∞} ≤ n s≤s : ∀ {m : ℕ {∞}} {n : ℕ {∞}} (m≤n : m ≤ n) → suc {∞} m ≤ suc {∞} n antisym : Antisymmetric _≡_ _≤_ antisym z≤n z≤n = refl antisym (s≤s m≤n) (s≤s n≤m) with antisym m≤n n≤m ... | refl = refl